Table II.
 Effect of the Metal Oxidant on the Ratio of Oxidation Products to Cyclized Ketone

[Oxidant], M	(II + III)/IV	
Mn(III), 0.11	0,13	
Mn(III), 0.23	0.23	
Ce(IV), 0,017	0.19	
Ce(IV), 0.034	0.35	
Cu(II), 0.0039, +	0.85	
Mn(III), 0.10		

ever, decreased linearly as the metal ion concentration increased, as shown in Figure 1 and Table II. These observations are all consistent with the proposed scheme in which products I and IV are produced *via* a free-radical pathway.

The relative rates of oxidation of the radical A by Mn(III), Ce(IV), and Cu(II) as estimated from Table II indicate that Cu(II) is a stronger oxidant than Ce(IV), which in turn is a stronger oxidant than Mn(III).¹

From Figure 1 the bimolecular rate of oxidation of radical A by Cu(II) relative to the rate of internal radical cyclization was found to be 240 at 25°. This high rate of oxidation of radical A by cupric acetate relative to internal cyclization is comparable to that reported for the cyclization of the δ -phenylbutyl radical³ to tetralin (350). The lower value obtained here is most probably due to a more rapid rate of cyclization of the tetralone precursor, due to stabilization of the cyclohexadienyl radical intermediate by the carbonyl group, rather than to differences in radical oxidation rates.⁴ Assuming the rate of radical oxidation by cupric acetate to be approximately 7.6 \times 10⁷ M^{-1} sec⁻¹, which is the value reported⁴ for the secondary butyl radical at 57°, the rate of internal cyclization of radical A can be calculated to be about 3×10^5 sec⁻¹, which is comparable to other reported rates of radical cyclization.⁵

Another variation of the synthesis of a cyclized product utilizing the reaction of a ketone with an olefin in the presence of Mn(III) or Ce(IV) is exemplified by the reaction of acetone with 5-phenylpentene-1, which gave the tetralin V as the predominant product in 70% yield. 4-Phenylbutene-1, however, gave only minor amounts of the cyclized product VI as shown in Table III. As

expected, the two adduct radicals had similar rates of oxidation by Mn(III) and hydrogen abstraction as shown in the last column in Table III. The difference in behavior of these two olefins, therefore, was due to

- (3) J. K. Kochi and R. D. Gilliom, J. Amer. Chem. Soc., 86, 5251 (1964).
 - (4) J. K. Kochi and R. V. Subramanian, *ibid.*, 87, 4855 (1965).
 (5) D. J. Carlsson and K. U. Ingold, *ibid.*, 90, 7047 (1968).

 $\begin{array}{c}
0.8 \\
0.7 \\
\hline
0.7 \\
\hline
0.6 \\
\hline
1 + \hline
12 \\
0.5 \\
0.4 \\
0.2 \\
\hline
0.1 \\
0 \\
\hline
1 \\
2 \\
3 \\
4 \\
10^3 x \begin{bmatrix} Cu(OAc)_2 \end{bmatrix}
\end{array}$

Figure 1. Effect of added cupric acetate on the product ratio.

the difference in the rates of cyclization of the two radical intermediates, which, in the case of the six-membered ring, is some 55-65 times greater than the rate of cyclization to form an indan.⁶

Table III.	Product R	atios of t	he Reaction	s of Aromatic
Olefins with	1 Acetone			

Olefinª	Ox ^b /(V or VI)	S ^c /(V or VI)	Ox ^b /S ^c
$\begin{array}{c} C_6H_5(CH_2)_3CH \Longrightarrow CH_2\\ C_6H_5(CH_2)_2CH \Longrightarrow CH_2 \end{array}$	0.20	0.12	1.5
	11.0	7.8	1.4

^{*a*} Identical reaction conditions, 45°, $[Mn(III)]_{av} = 0.09 M$. ^{*b*} Ox = unsaturated ketone + keto ester. ^{*c*} S = saturated noncyclic ketone.

Acknowledgment. The authors are indebted to Dr. P. G. Rodewald for the synthesis of some cyclic ketones, and to Mr. G. E. Stead for skillful assistance in carrying out the reported experiments.

(6) W. H. Urry, D. J. Trecker, and H. D. Hartzler, J. Org. Chem., 29, 1663 (1964).

E. I. Heiba,* R. M. Dessau Mobil Research and Development Corporation Central Research Division Princeton, New Jersey 08540 Received January 10, 1972

"Through-Space" Coupling between Bucking Fluorine and Hydrogen Nuclei in trans-1,1'-Difluorotetrabenzopentafulvalene¹

Sir:

Recently, compelling evidence has been put forward in favor of a "through-space" ("direct") mechanism operating in long-range proton-fluorine spin-spin coupling in a series of bridged biphenyls and phenan-

(1) Fulvenes and Thermochromic Ethylenes. 64. For part 63 see E. D. Bergmann and I. Agranat, J. Chem. Soc. C, 3532 (1971).

threnes.² The spatial structures in these rare cases had been estimated beforehand. In particular, the short internuclear distance between the interacting nuclei, fluorine, and methyl proton served as a basis for the firm establishment of the through-space mechanism. We wish to report the phenomenon of throughspace H-F coupling $({}^{7}J_{H-F})$ in *trans*-1,1'-difluorotetrabenzopentafulvalene ((E)-1) and its significant contribu-

tion toward the endeavor to shed light upon the spatial structure of the highly controversial parent compound tetrabenzopentafulvalene (2).³

1,1'-Difluorotetrabenzopentafulvalene (1) was synthesized in the following manner, applying conventional methods:3b zinc-ammonia reduction of 1-fluoro-9fluorenone⁴ in boiling ethanol gave 1-fluoro-9-fluorenol (mp 116°),⁵ which was converted to 9-bromo-1-fluorofluorene (mp 93°)⁵ by hydrobromic acid (48 %) in acetic acid at 60°. Treatment of the latter with Triton B (40% in methanol) in p-dioxane at 24° afforded the desired compound 1, as red needles: mp 208°;5 $\lambda_{\max}^{C_{6}H_{12}}$ (log ϵ) 245 nm (4.88), 271 (4.50), 312 (3.41), 351 s (3.61), 369 (3.66), and 453 (4.43).

1 exists in two geometrical forms, the cis isomer ((Z)-1) and the trans isomer ((E)-1), as revealed by the ¹H and ¹⁹F magnetic resonance spectra:⁶ pmr $\delta^{CDCl_{\theta}}$ 8.38 (m, ca. 1 H), 7.68 (m, 2 H), 7.47 (m, ca. 3 H), 7.28 (m, 6 H), and 6.94 ppm (m, 2 H). The low-field ¹H multiplet at δ 8.38 ppm, which is characteristic of the protons ortho to the "pinch" of the tetrabenzopentafulvalene system (H-8 and H-8'),^{3c} corresponds to only 43% of the calculated value (two ortho protons vs. 12 remaining protons). This absorption can appear only in the spectrum of (Z)-1, which resembles in this respect the parent compound 2. In the spectrum of (E)-1, due to the shielding effect of each fluorine nucleus upon its bucking proton, the low-field absorption is shifted to the normal aromatic region. Thus, the pmr spectrum of 1 points to a mixture of 43 % of (Z)-1 and 57 %of (E)-1. Both the chemical shift and the pattern of the multiplet at 6.94 ppm indicate that it represents the protons ortho to the fluorine in both isomers, H-2 and H-2'. The multiplet at 7.68 ppm represents the angular protons H-5 and H-5' (in both isomers).⁷ The

(2) (a) G. W. Gribble and J. R. Douglas, J. Amer. Chem. Soc., 92, 5764 (1970); (b) K. L. Servis and F. R. Jerome, ibid., 93, 1535 (1971), and references cited therein.

(3) (a) E. Bergmann and A. Weizmann, Chem. Rev., 29, 575 (1941);
(b) E. D. Bergmann, Progr. Org. Chem., 3, 81 (1955);
(c) M. Rabino-vitz, I. Agranat, and E. D. Bergmann, Tetrahedron Lett., 1265 (1965);
(d) E. D. Bergmann, Chem. Rev., 68, 41 (1968);
(e) I. R. Gault, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc. D, 269 (1970);
(f) N. A. D. J. Willing and M. Collission and Soc. D, 269 (1970);
(f) N. A. Bailey and S. E. Hull, ibid., 960 (1971).

(4) T. L. Fletcher and M. J. Namkung, Chem. Ind. (London), 179 (1961).

(5) All new compounds have been fully characterized (combustion

analyses, ir, uv, mass spectra). (6) The ¹H and ¹⁹F nmr spectra were recorded at 100 and 94.1 MHz, respectively. ¹H chemical shifts are reported in parts per million downfield from Me₄Si. ¹⁹F chemical shifts are reported in hertz upfield from CCl₃F.

(7) (a) K. D. Bartle and D. W. Jones, J. Mol. Struct., 1, 131 (1967-

other angular protons, H-4 and H-4', are shifted to a higher field, due to the effect of the para fluorine atoms, and are included in the 7.47 multiplet. It is the only one (apart from the low-field multiplet) which represents (approximately) an odd number of protons; it must therefore include the absorption due to H-8 and H-8' of (E)-1. The last multiplet, at 7.28 ppm, represents H-3, H-6, H-7, H-3', H-6', and H-7'.⁷ The pmr spectrum of 1 in C_6D_6 reveals the absorption representing H-8 and H-8' of (E)-1 as a separate multiplet, at 7.60 ppm.

The above interpretation is confirmed by the ¹⁹F magnetic resonance spectrum⁶ (C_6D_6) of 1, which contains two signals, at 9080 and 9600 Hz in the ratio of 3:4. The low-field signal represents the fluorine atoms of (E)-1. In (Z)-1, the two bucking fluorine nuclei shield each other, thus shifting the fluorine absorption to a higher field.

The most striking feature in the spectra of 1 is the difference in the pattern of the two fluorine multiplets. While the multiplet attributed to (Z)-1 appears to be "normal" (resembling, e.g., the ¹⁹F nmr spectra of 9,9dichloro-1-fluorofluorene and 9-bromo-1-fluorofluorene), the multiplet attributed to (E)-1 reflects an additional nonnegligible coupling (J = 7 Hz). We submit that this phenomenon must be rationalized in terms of a "through-space" ("direct") spin-spin coupling, operating between the bucking nuclei, F-1 vs. H-8' and F-1' vs. H-8 in trans-1,1-difluorotetrabenzopentafulvalene ((E)-1). This conclusion was verified by proton-fluorine decoupling experiments (in C_6D_6). The ¹⁹F-{¹H} proton-decoupled spectra indicated the following. (1) Double irradiation at 6.94 ppm (nullifying the ${}^{3}J_{H-F}$ coupling due to H-2 and H-2' in both isomers), collapsed the 9600-Hz signal to a singlet, and transferred the 9080-Hz multiplet into a doublet (J = 7 Hz). (2) Double irradiation at 7.60 ppm (nullifying the throughspace coupling due to H-8 and H-8' of (E)-1) transformed the low-field signal into a quartet $(J_1 = 9 \text{ Hz},$ $J_2 = 4$ Hz), while the high-field signal remained unaltered. The ${}^{1}H-{}^{19}F{}$ fluorine-decoupled spectra exhibited a simplification of the 7.60-ppm multiplet (into a "quartet") only by irradiation at 9080 Hz.

The existence of a substantial through-space coupling between F-1 and H-8' in (E)-1 reflects the short distance between the interacting nuclei. This in turn implies a ground-state conformation in which the deviation from planarity is rather small. Particularly, if the molecule, in order to relieve the "overcrowding" around the "pinch," adopts a twisted conformation, the twist must be limited to a degree which still permits the through-space H-F coupling to operate. This coupling, which has the largest ${}^{7}J_{H-F}$ yet observed, results from interactions centered not on fluorine and methyl carbon nuclei,² but directly between fluorine and hydrogen nuclei.

In the closely related 1,1'-difluoro-6,6'-diisopropylbianthrone,⁸ there exists no evidence of a through-space H-F coupling. The ¹⁹F spectrum (CH₂Cl₂) shows two "normal" multiplets at 10,083 and 10,347 Hz,6 indicating the presence of two geometrical isomers. The conformations of both deviate considerably from

(8) E. D. Bergmann, H. Weiler-Feilchenfeld, A. Heller, C. Britzmann, and A. Hirschfeld, Tetrahedron, Suppl., No. 7, 349 (1966).

^{1968); (}b) M. Rabinovitz, I. Agranat, and E. D. Bergmann, J. Chem. Soc. B, 1281 (1967).

planarity: even in the trans isomer, F-1 is never in proximity to H-8'.

The fluorine signals of 1 did not coalesce even at 220°. This behavior contrasts sharply with the ease of the cis-trans isomerization of 1.1'-dialkoxycarbonyl derivatives of 2.3e Undoubtedly, such bulky substituents, through their contribution to the groundstate strain, lower substantially the activation energy for the interconversion of the geometrical isomers. The energy barriers associated with the cis-trans isomerization of 1, in which the ground-state strain is much diminished, are significantly higher.

> Israel Agranat,* Mordecai Rabinovitz Ian Gosnay, Arie Weitzen-Dagan Department of Organic Chemistry The Hebrew University of Jerusalem Jerusalem, 1srael Received December 3, 1971

The Complementarity of (4 + 2) Cycloaddition¹ Reactions and [2,3] Sigmatropic Rearrangements in Synthesis. A New Synthesis of Functionalized Hasubanan Derivatives

Sir:

Although a number of elegant rearrangements generally classified as [2,3] sigmatropic processes have recently been reported,² the incorporation of this class of reactions into synthetic methodology has been quite limited.³ The purpose of this communication is to define the complementary nature of certain (4 + 2) cycloaddition and [2,3] sigmatropic reactions. As illustrated in Scheme I, the merging of these two processes

Scheme I

leads to substituted cyclohexene derivatives such as 4 which may be relatively inaccessible via the direct cycloaddition route.

In the course of our current work directed toward the synthesis of both the hasubanan and morphine bases,⁴ an annelation sequence like that depicted in Scheme I appeared to offer an attractive solution to the construction of hasubanan derivatives (cf. 8b) embodying a ring-C oxidation pattern common to both classes of alkaloids. The application of this merged cycloadditionrearrangement process as applied to the synthesis of

(2) J. E. Baldwin and J. E. Patrick, J. Amer. Chem. Soc., 93, 3556 (1971), and references cited therein; P. Bickart, F. W. Carson, J. Jacobus, E. G. Miller, and K. Mislow, ibid., 90, 4869 (1968), and references cited therein.

(3) (a) D. A. Evans, G. C. Andrews, and C. L. Sims, *ibid.*, 93, 4956
(1971); (b) D. A. Evans and G. C. Andrews, *ibid.*, in press; (c) J.
F. Biellmann and J. B. Ducep, *Tetrahedron Lett.*, 33 (1971); (d) J.
E. Baldwin, R. E. Hackler, and D. P. Kelly, J. Amer. Chem. Soc., 90, 4758 (1969); (e) L. F. Beldwin, L. DeBernerdie, and L. F. British. 90, 4758 (1968); (e) J. E. Baldwin, J. DeBernardis, and J. E. Patrick, Tetrahedron Lett., 353 (1970).

(4) D. A. Evans, C. A. Bryan, and G. M. Wahl, J. Org. Chem., 35, 4122 (1970), and references cited therein.

Scheme II

the tetracyclic amino alcohol 8b is illustrated in Scheme II.

The pivotal feature in the annelation scheme depicted above involves the conversion of sulfoxide 7 into allylic alcohol 8b, a transformation which relies upon the interception of the corresponding sulfenate ester 8a with appropriate thiophilic reagents.^{3a,b} In an effort to test the viability of this proposed sequence a synthesis of the previously unreported 1-butadienyl phenyl sulfoxide (5) was undertaken. The addition of phenyl sulfenyl chloride to butadiene cleanly afforded the chloro sulfide 9 in greater than 90% yield.⁵ Subsequent dehydrohalogenation of 9 with potassium tert-butoxide in THF at 0° gave the trans-dienyl sulfide 10 as a colorless liquid (bp 50-53° (0.04 mm)) in 60% yield.67 Although 10 has been synthesized by an alternate procedure,⁷ the present route is decidedly more flexible in that a wide variety of chloro sulfides have recently been prepared from substituted dienes.⁵ Oxidation of 10 with sodium periodate in methanol at 0° afforded the desired sulfoxide in 76% yield as a colorless oil (molecular distillation, 50° (0.01 mm)).6

Upon heating equimolar quantities of 5 with the tetrahydrobenzindole (6)⁴ in acetonitrile at 70° for 24 hr, a diastereomeric mixture of sulfoxides 7 as well as some rearranged amino alcohol 8b was obtained indicating that cycloaddition and rearrangement were occurring consecutively.8 As we have recently demonstrated, the formal transposition of sulfoxide and alcohol functions with allylic rearrangement (*i.e.*, $7 \rightarrow 8b$) can be conveniently accomplished in good yields.^{3a,b} Thus, on treatment of the unpurified reaction mixture from 5 and 6 with $Na_2S \cdot 9H_2O$ in methanol for 8 hr at 65° followed by chromatography on Florisil, the desired amino alcohol 8b was obtained as an oil which

⁽¹⁾ The term cycloaddition is used here in accordance with the liberalized definition recently suggested by J. E. Baldwin, J. Org. Chem., 32. 2438 (1967).

⁽⁵⁾ W. H. Mueller and P. G. Butler, J. Org. Chem., 33, 2642 (1968).

⁽⁶⁾ All new compounds reported gave consistent ir, nmr, and mass

spectra and combustion analyses. (7) E. N. Prileshaeva, G. S. Vasilev, and V. H. Petrov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 2217 (1967).

⁽⁸⁾ Apparently during the reaction between 5 and 6 some 7 rearranges to 8a and is intercepted by a nitrogen nucleophile; cf. D. J. Abbott and C. J. M. Stirling, J. Chem. Soc. C, 818 (1969).